concepts.dm.pdsketch.generator.Generator3#
- class Generator3[source]#
Bases:
object
A generator is function that generates a set of values from a set of given values. Semantically, it certifies that the generated values satisfy a given condition.
Methods
Attributes
The names of the arguments of the operator.
The types of the arguments of the operator.
The input variables of the function.
The name of the generator.
The arguments of the generator.
The condition that the generated values should satisfy.
The context values that the generator depends on.
The values that the generator generates.
The declaration of the underlying function that generates the values.
The output variables of the function.
The output type of the function.
The condition that the generated values should satisfy, flattened.
The implementation of the generator.
The priority of the generator.
Whether the generator is unsolvable.
- __init__(name, arguments, certifies, context, generates, function, output_vars, flatten_certifies, implementation=None, priority=0, unsolvable=False)[source]#
- Parameters:
name (str)
certifies (ValueOutputExpression)
context (Sequence[VariableExpression | ValueOutputExpression])
generates (Sequence[VariableExpression | ValueOutputExpression])
function (Function)
flatten_certifies (ValueOutputExpression)
implementation (Implementation | None)
priority (int)
unsolvable (bool)
- __new__(**kwargs)#
- property argument_types: Tuple[ObjectType | ValueType, ...]#
The types of the arguments of the operator.
- certifies: ValueOutputExpression#
The condition that the generated values should satisfy.
- context: Tuple[ValueOutputExpression | VariableExpression, ...]#
The context values that the generator depends on.
- flatten_certifies: ValueOutputExpression#
The condition that the generated values should satisfy, flattened.
- generates: Tuple[ValueOutputExpression | VariableExpression, ...]#
The values that the generator generates.
- implementation: Implementation | None#
The implementation of the generator.
- output_types: Tuple[TensorValueTypeBase | PyObjValueType, ...]#
The output type of the function.